Neonatal neuropsychology: Emerging relations of neonatal sensory–motor responses to white matter integrity
نویسندگان
چکیده
The neonatal period is considered to be essential for neurodevelopment and wellbeing throughout the life span, yet little is known about brain-behavior relationships in the neonatal period. The aim of this study was to evaluate the association between neonatal sensory-motor regulation and white-matter (WM) integrity of major fiber tracts in the neonatal period. We hypothesized that WM integrity of sensory-motor systems would predict neurobehavioral maturation during the first month of life. Forty-nine premature neonates underwent magnetic-resonance-imaging at term. Diffusion-tensor-imaging analysis was performed in major WM tracts along with repeated neonatal neurobehavioral evaluations assessing sensory reactivity and motor regulation. Difficulties in one or more behavioral sub-category, mostly in auditory and visual attention, hypotonicity and jitteriness, were documented in 78.3% infants at term. Sixty-six percent of infants experienced difficulties, mostly in auditory attention, head-neck control, hypotonicity and motor asymmetry, at 44 weeks. Attention difficulties were associated with reduced integrity of cerebral and superior cerebellar peduncles; while tonicity was associated with reduced integrity of the corpus-callosum and inferior-posterior tracts. Overall, results showed that early maturing tracts were related with the degree of typicality of sensory reactivity status while late maturing tracts were related with the degree of typicality of tonic regulation. WM integrity and maturation factors explained 40.2% of the variance in neurobehavior at 44 weeks. This study suggests that in preterm neonates, deviant sensory-motor reactivity can be detected very early in development in manners that are related to lower integrity/maturational level of early and late maturing fiber tracts.
منابع مشابه
Corticospinal tract integrity and motor function following neonatal stroke: a case study
BACKGROUND New MRI techniques enable visualisation of corticospinal tracts and cortical motor activity. The objective of this case study was to describe the magnetic resonance evidence of corticospinal pathway reorganisation following neonatal stroke. CASE PRESENTATION An 11 year old boy with a neonatal right middle cerebral artery territory ischaemic stroke was studied. Functional MRI was un...
متن کاملNeonatal Brain MRI and Motor Outcome at School Age in Children with Neonatal Encephalopathy: A Review of Personal Experience
The aim of this paper is to review (i) the spectrum of neuromotor function at school age in children who had been born full-term and presented with neonatal encephalopathy (NE) and low Apgar scores and (ii) the relation between the presence/absence of such difficulties and neonatal brain MRI. Motor outcome appears to be mainly related to the severity of basal ganglia and internal capsule involv...
متن کاملSelective vulnerability of subplate neurons after early neonatal hypoxia-ischemia.
Neonatal hypoxia-ischemia in the preterm human leads to selective injury to the subcortical developing white matter, which results in periventricular leukomalacia (PVL), a condition associated with abnormal neurodevelopment. Maturation-dependent vulnerability of late oligodendrocyte progenitors is thought to account for the cellular basis of this condition. A high frequency of cognitive and sen...
متن کاملSensory modulation in preterm children: Theoretical perspective and systematic review
BACKGROUND Neurodevelopmental sequelae in preterm born children are generally considered to result from cerebral white matter damage and noxious effects of environmental factors in the neonatal intensive care unit (NICU). Cerebral white matter damage is associated with sensory processing problems in terms of registration, integration and modulation. However, research into sensory processing pro...
متن کاملWhite matter fractional anisotropy predicts balance performance in older adults.
Aging is characterized by brain structural changes that may compromise motor functions. In the context of postural control, white matter integrity is crucial for the efficient transfer of visual, proprioceptive and vestibular feedback in the brain. To determine the role of age-related white matter decline as a function of the sensory feedback necessary to correct posture, we acquired diffusion ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuropsychologia
دوره 62 شماره
صفحات -
تاریخ انتشار 2014